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Abstract —1In the past. formulations for technically orthotropic plates appear to have been based
only on Kirchhofl"s assumptions for the classical thin plate theory. In the present paper, the authors
have studied a formulation applicable to eccentrically stiffened plites based on the Reissner-Mindlin
plate theory. Due to the formidability of the 10th-order governing equations of this formulation in
yiclding closed form analytical solutions, recourse has been taken to the finite element method. The
range of validity of the orthotropic model, so dependent upon the proximity of stiffeners, has been
assessed and demarcated by comparison with a more gencral discrete plate -beam model using the
techniques of dimensional analysis. Finally, results are presented for the geometrically non-lincar
orthotropic plate and comparisons are made with the work of carlier investigators to highlight the
fact that the degree of eccentricity of stiffeners is an important factor to be taken into account, in
addition to the volumetric ratio between plate and stiffeners.

INTRODUCTION

The problem of the bending of eccentrically stiffened plates does not lend itself to casy
analytical solutions even for simple geometries and bounditry conditions. Consequently,
idealization of a stiffened plate, which can be treated as an integral system of plate and
beams, by means of another plate of sume thickness as the parent plate but posscssing
cquivalent, directionally varying propertics, has been quite popular (Bares and Massonnet,
1966 ; Troitsky, 1971). In the literature, such idealized plates with the stiffeners smeared out
are termed as ““technically orthotropic plates™ on account of their resemblance with plates
of truly orthotropic materials. In the past, to the authors’ knowledge, orthotropic plate
theories relevant to eccentrically stiffened plates have been based on Kirchhoff's assumptions
of the classical thin plate theory, as well as the Euler-Bernoulli beam theory. In the present
work, a higher order orthotropic plate theory for eccentric stiffencrs, based on the Reissner-
Mindlin plate theory and Timoshenko beam theory is considered. The governing equations
for the present idealization are of the 10th-order and appear to be quite intractable in terms
of obtaining closed form solutions, even for simple geometries and boundary conditions.
The most convcnient tool yiclding approximate solutions acceptable for engineering
purposcs, scems to be an energy method like the finite element method. This widely applied
numerical technique has been used here with the eight-noded, quadratic plate bending
clement (Mukhopadhyay and Satsangi, 1984; Deb and Booton, 1988) employing reduced
integration. A common premise of the orthotropic plate theories in the context of ortho-
gonally stiffened plates is the assumption of closeness of torsionally-soft stiffeners. As a
result, these theories may give rise to significantly erroneous results unless the stiffeners are
*reasonably™ closely spaced. In order to be able to apply a smeared plate or an orthotropic
plate theory with confidence, it is therefore essential on the part of an analyst to know,
quantitatively, the extent of its validity in terms of the approximations involved. In this
study, the saume has been accomplished by comparing the results from the finite element
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formulation based on the higher order orthotropic theory (ORTHO). with the cor-
responding general discrete plate-beam finite element model [FEM(M2)]. The effectiveness
of the latter formulation has already been studied (Mukhopadhyay and Satsangi. 1984
Deb and Booton. 1988). In the numerical comparison between the models ORTHO and
FEM(M2). concepts of dimensional analysis have been applied. The authors have not come
across any literature that gives any quantitative information on the degree of approximation
incorporated by the smearing of stiffeners in an orthotropic theory. Having demarcated the
extent of validity of the present orthotropic model considering small-deformation linear
elastic behavior, a comparison has been made for geometrically non-linear behavior with
the results given by Srinivasan and Ramchandran (1977). The main aim in this comparison
has been to point out that the degree of eccentricity of stiffeners is an important factor in
affecting the behavior of a stiffened plate, for a given volumetric ratio of plates to stiffeners.
It may be recognized that despite the availability of a general formulation like the
FEM(M2). the formulation ORTHO may be extremely advantageous in terms of simplicity
of input data and computational etficiency in such cases where a fine grid of stiffeners is
present.

CONSTITUTIVE MODEL AND GOVERNING EQUATIONS

The principal assumptions in the present formulation are the following :

(i) Transverse shear deformation is accounted for in the same manner as in the
Reissner-Mindlin plate theory and Timoshenko beam theory.

(ii) Normal stress in a direction perpendicular to the plane of the plate is neglected.

(ii)) A typical stiffencer section is assumed to be symmetric about a vertical plane
bisecting the web.

(iv) The in-plance bending of stiffeners is neglected.

(v) Stifleners are assumed orthogonal and equally and closely spaced.

(vi) Stiffeners in any one direction are all of identical cross-section.

(vit) Stiffeners are of open web and slender type, possessing negligible torsional stitfness.

In terms of the relevant translational (i, v and w) and rotatory (0, and 0,) degrees of
freedom of the plate mid-surface (- = 0). the following displacement field is assumed for
the stiffened plate continuum (the positive signs of ¢, and 0, tally with the assumption that
sagging bending moments are positive) :

U u—=z0,
Vie=<v—z:0,p. (1)
W W

The relevant engineering strains for infinitesimal deformations are then given as follows:

£, U,

g, V.

Tw g =9 Ut Vs ()
Ve U.+W,

Vs V.+ W,

Therefore, for an isotropic material, the stresses in the plate are:
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Fig. l. Geometry of an orthotropic plate.
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where, in terms of Young's modulus £,, Poisson’s ratio y. shear modulus G, and a shear
correction factor & (usually taken as ),

1)
o=y = e 3.1
-
L,
Cpy = lll - B 3.2)
Caq = Gp (3.3)
Css = Con = lep' (34)

Relevant stresses in the x-stiffeners are

T Ev.\’ 0 £y
{tn‘.‘} - [ 0 kZG.\t] {7(:}. (4)

Relevant stresses in the p-stiffeners are:

O E, 0 £,
{rs,r:} N [ 0 leu-] {.l'r.'}. ©)

In (4) and (5). E... E,, and G,.. G,, arc pairs of Young's and shear moduli, respectively,
for x- and y-stiffeners, and, &, is a shear correction factor usually taken as } for rectangular
cross-scctions.

By virtue of the assumptions outlined previously, the generalized stresses (stress-
resultants) can be obtained by smearing out the stiffeners over the plate spans and inte-
grating the relevant quantities over the plate thickness and the stiffener depths. Typically,
the bending moment M can be obtained as shown below for the special case of rectangular
stiffeners (see Fig. 1) by summing contributions due to plates and stiffeners:
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M, = za, do o dz
: b 02

£’ . .
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12(1 — ) :

fd

uE*
TR =g (6)

The remaining stress-resultants (with the sign conventions in Fig. 2) can be obtained
similarly leading to a constitutive relation of the following type for the “technically ortho-

tropic™ plate (where the stifiness elements are defined in the Appendix):

(N ) (C,, C» 0 Cyy O 0 0 0] u, b
N, Cy C.ax 0 0 Cis 0 0 0O v,
N, 0 0 Cy O 0 0 0 0 U+,
M, Cy 0 0 Cyu Cs 0 0 0 -0,

3 = 3 > (7)
M, r 0 Cyy 0 Cy Css 0 0 0O -0,,
M., 0 0 0 0 0 Ci, 0 0 - (0., +0,.)
0. 0o ¢ 0o 0 O 0 C;p; O w -0,

L O 0 0 0 0 0 0 0 Cug L w,-0 J

In symbolic notation, let (7) be written as,
¢.n

G = ng‘-

If an unstiffened plate is made of a specially orthotropic material, i.e. the one for which the
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Fig. 3. Equilibrating stress resultants at the boundary.
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directions of the principal material axes coincide with the x, y and - axes, the terms C,,
and C,, which give rise to coupling between the membrane and bending resultants in (7),
will vanish. On the other hand, for a generally orthotropic plate for which the material’s
principal directions are all inclined to the geometric x, y and = directions, the constitutive
matrix in (7) will be fully populated, i.e. all components of the generalized strains will be
coupled to each other. The *‘technical orthotropy” being considered here thus really lies in

between behaviors exhibited by special and general orthotropies.

By applying equilibrium considerations in the presence of a transverse loading P(x, y),
the following governing equations for the orthogonally stiffened plate may now be derived :

Crt +Cyyu, +(C1a+Cis)r(, —Cril i =0
(Cia+Cou+Cyy o +Caat , —Casl, ,, =0
Craw  +Cpuw ), —Cr70,  —Cyyf, ., + P =0
Cratt ey = Cu40, o = Coeleyy + C170 = (Cas + Co6)0y ey —Cryw, = 0

C: Sv.y,v - (CJS + Cﬁs)o.r..w - C&ﬁoy..rx - Csio_v.y_r + C&ltoy - an w._v =0,

®
9)
(10)
(1)
(12)

The above eqns (8)-(12) are subject to the following boundary conditions (see Fig. 3):
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u=U(s), or., Nm+N,n,=N(s) (13)
r= V(). or, Non+Noan, = Nys) (14)
w= W(s). or. Q.n+0Q.n=0(@) {15
0, =0.s5). or., Mn +M.n,=M,(s) (16)
0, =0,0). or. M n+Mn,=—M/s). (N

Equations (8)—(12) are of 10th-order and are difficult to solve purely analytically. even for
relatively simple plate geometry and boundary conditions. A tractable case is that of a
simply supported rectangular plate {(a x &) where double Fourier (Navier's) type of solutions
can be found in the following forms:

U= ,.g: "; Ao €08 (2,,%) sin (8,3 (i8)
v = m; ”\; B, sin{x,x}cos (f,.1) (19)
W o= mil "gl C o i1 (20, X) sin (,5) 20)
i, = "g‘ HZ::! D, cos (a,x})sin(fl,y) zh
0, = }’: Z E,.. sin (2,x) cos (f,3). (22)

meatn-l

[t is obvious that for the above type of solutions to be applicable it is necessary to express
the applied transverse loading as follows:

P= Z::' ; P, sin (2,,X) sin (fi,y). (23)
In (18)-(23) above,
I (24.1)
a
B. = '—;—:f. (24.2)

[tis pointed out that the assumed solutions (18)~(22) satisfy the following simply supported
type of boundary conditions:
at x=0a: r=w=40 =0 (25.h)
at y=0b: u=w=0,=0. (25.2)
For a given pair of m and n, use of the corresponding terms (and their derivatives) of the

serics expansions (18)-(23) in eqns (8)~(12) will result in the following matrix equation for
the constants 4,,,,. B.... etc.:
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[ (Co25+C33B)  (Cra+Cry)2np, 0 ~Ciaxy,
(Ci: 4 C3)%uBy (Ca32m+Ca2Bl) 0 0
0 0 (C112m + CuB) —Cr1%m
—Cia 0 = Crr2y (Costn+CooBi +Cr7)
L 0 —Csha —CyyBn (Cas+Coe)2mBa
0 ] Apn 0
—CusBi B,. 0
= CysBn Con 7 =% Puw . (26)
(Cuas+ Cye)tmBn D, 0
(Cosa+ CssBi +Cyy) E.. 0

For the particular cases of (a) a uniformly distributed load p, and, (b} a concentrated load
Pola;2.5/2), P, will be given as follows:

4
P, = »—ﬁ— (cos mr—)(cos nm—1), for case (a) (27.1H
T mn
4P, . mm _ un
= S —— Sin - . n . 27.2
o SN 3= sin 5 for case (b) (21.2)

The closed form double Fourier solutions furnished in the foregoing serve to check the
accuracy of the finite clement orthotropic formulation to be discussed in the section that
follows.

FINITE ELEMENT FORMULATIONS

Two finite element formulations are relevant to the present exposition: (i) a discrete
plate-beam formulation termed FEM(M2) in Deb and Booton (1988), and (ii) a for-
mulation (abbreviated as ORTHO) accounting for technical orthotropy of the type already
discussed, and bricfly mentioned in Deb and Booton (1988). The formulation FEM(M2)
is quite general us compared to ORTHO and hence can be used as a basis for judging the
applicability of the latter, constrained mainly by the assumption of closeness of stiffeners.
The effectiveness of FEM(M2) has already been shown in Deb and Booton (1988). The
orthotropic formulation, which like FEM{M2) employs the isoparametric serendipity, eight-
node plate-bending element (Fig. 4), takes into account geometric non-linear behavior,
consistent with Von Karman's assumptions for large deflections of plates. The consideration
of some of the non-lincar terms in the expressions for strains is particularly important for
stiffened plates which can support large loads undergoing elustic deformation, greater than
the infinitesimal. The salient features of the present non-linear, finite element, orthotropic
formulation are listed below:

(a) Finite clement approximation :
displacement ficld,

L
§=4 w b= 5 NS = NS, (28)
0 iwl
0,

where &, is the vector of nodal displacements at the ith node, N is the augmented (8 x 40)
matrix of shape functions and J, is the (40 x 1) vector of plate nodal displacements.
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Fig. 4. The screndipity plate clement.
(b) Strain-displacement relations:
infinitesimal strain ficld,
£, = Ly = LNJ, = B, J,, (29)

where £, fiest appears in (7.1), L is a matrix of lincar differential operators and B, (= LN)
is the lincar strain-displacement matrix.

The strain field, in Lagrangian coordinates, by taking into account non-linear dis-
placement gradients consistent with Von Karman’s assumptions for large deflection of
plates, is given by

€= €, +En, (30
where
(Wi )
iw?
WoW,
0
Evi = 4 0 > (3n
0
0
L 0

The strain field due to an incremental (or differential) displacement field is now
i = §, +év, = (BL+AG)S, = By, 5, (32)

where By, (= B+ AG) is the non-linear strain-displacement matrix, with A and G given
as follows:
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+ [w: 0 w, 00000 321
A‘[o w, w, 00 0 00 20
00 ai 00
G = X N. (32.2)
d
— 00
00

(c) Invoking virtual work principle and using a total Lagrangian approach. it is possible to
write

f §T¢'dAd = 8TR, (33)
A

where A is the undeformed plate mid-surface, ¢ is the second Piola-Kirchhoff stress vector
and R is the vector of plate nodal forces. As a first approximation, we assume that
displacement gradients are small compared to unity and rigid body rotations can be ignored.
The second Piola-Kirchhoff stresses ¢ in (33) can then be replaced by the Cauchy stresses
. Also, employing (32) and the condition of arbitrariness of the virtual displacement field
8.. (33) can be reduced to

j B GdA—R =0. (34)
A

In the above equation, the intcgrand is a non-lincar function of the nodal displacement
vector §,. An iterative solution to this equation can be sought by using the tangent stiffness
(Newton-Raphson) method. The solution scheme for the present case is much the same as
described by Pica et al. (1980).

RANGE OF VALIDITY STUDY OF THE ORTHOTROPIC THEORY

In order to assess the range of validity of the orthotropic formulation ORTHO, the
various parameters likely to affect the assumptions of technical orthotropy are, at first,
identificd using the principles of dimensional analysis and a comparison is then carried out
in the lincar range with the more general formulation FEM(M2). For convenience the
simplified problem of a squarc plate (¢ = b = /), orthogonally stiffencd with an equal
number of rectangular stiffeners in the x and y directions, possessing identical sectional and
material properties is considered. In order to estimate the deviation of maximum deflection
and plate, as well as stiffener stresses obtained through ORTHO with respect to those
obtained through FEM(M2), the following parameters are introduced :

Maximum deflection obtained using ORTHO

o = Maximum deflection obtained using FEM(M2) (33)
_ Maximum plate stress obtained using ORTHO (36)
T = Maximum plate stress obtained using FEM(M2)
N = Maximum stiffener stress obtained using ORTHO 37)

Maximum stiffener stress obtained using FEM(M2) "’

Let the parameters n,. ., and 7,,,, which are all dimensionless, be together denoted as 7.
The dependence of # on the relevant parameters may be expressed symbolically as follows:
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n=o¢(tb.d.s.E.E.u LT BC), (38)

where

¢ = “function of
I, 1 = plate span. thickness respectively
b,. d, = stiffener-web width, depth. respectively
5 = spacing of stiffeners
E.p = Young’s modulus. Poisson’s ratio, respectively. for the plate material
E. = Young's modulus for the stiffener material
LT = Loading type, concentrated or uniformly distributed

BC = Simply supported or fully clamped boundary conditions.

Ineqn (38). LT and BC are discrete conditions for which no numerical values are necessary
and it suffices to remember that these parameters should be varied. A dimensional analysis
{Deb et al., 1985 Deb and Deb, 1986) of the remaining variables in (38) will result in the
following possible set of seven dimensionless n-parameters

ny=1Ilit, n,=1lh, nmi=djt. ny=s/l, a;=FEE., ne=u n,=n (39

In the above set of r-parameters, my identifics whether the plate is thin or thick ; r, may be
utilized to study the effect of the span stze of a plate for a given web width of stiffeners : n,
is a measure of eccentricity of stiffeners ; m, is a significant parameter which is used to study
the degree of proximity of stiffeners beyond which the orthotropic formulation would be,
by and large. unaceeptable; the parameter 74 is modilied to a more meaningful rigidity
ratio N/D, as shown later; the parameter i, is not likely to play any role in affecting smeared
behavior and hence has been kept constant at 0.3 ; ind, n; is basically the set of dependent
variables ... 1., and 1,,, whose numerical differences with unity will indicate the extent of
approximation introduced by the smearing of stiffeners in the orthotropic theory.

It is known from plate theory that £/(1— %) is a more meaningtul quantity for plates
rather than simply E because of its two-dimensional behavior. Using this fact and the
technique of compounding (Deb et af., 1985) in dimensional analysis, g is transformed as
follows:

(‘ E. ') o E s
SO E) MRS Ed T,

Ee 12¢ D

o = 39.1
11—y Ebd} D, (39.1)
where D and D, are, respectively, the plate and stiffener rigidities

Er?
= = 9.2
b 12(1 — p°) (39.2)

A 3
p, = b (39.3)

12s

In the present parametric study. the stiffened plate system is assumed to be made up of one
material, i.e. £ = E, resulting in a further modification of the parameter D/D,. Rewriting
D’ D, under the preceding assumption (£ = E,), we have
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Fig. 5. Convergence study.
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Since n, (= 0.3) is kept constant, it is evident from (39.4) above that r, will be determined
if s (= D/D,), ny and n, are known. Hence, for the purpose of demarcating the range of
validity of ORTHO, it is only nccessary to study the influence of the following parameters
onn:

n,=1Ift, ny=dft, n,=s/l, ny= DD, LT, BC. (40)

Before starting the intended parametric study, the convergence characteristic of
ORTHO neceds to be checked. For this purpose, a comparison is made with the series
solutions presented in an earlier section [eqns (18)-(27.2)] by taking a simply supported
rectangular stiffened plate with 14 stiffeners in the x direction (i.e. n,, = 14, n,, = 0), with
the following geometrical and material propertics:

for the plate:
a=4, h=2, =01

E=2x10", u=03

for the stiffeners:
d =05 b,=0.1
E,.=2x10",

The results of convergence study (for central deflection w) are shown in Fig. 5 for two cases
(a) ud! (uniformly distributed load) = 31,250, and, (b) cp! (central point load) = 52,000.
Excellent convergence (up to three decimal places) is obtained for about 16 elements for
case (a) and for about 24 elements for case (b). To obtain similar convergence for stresses
for the present displacement-based method however, a slightly higher number of elements
is necessary.
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Fig. 7. Case Study H (r, = 100, , = 5, LT =¢pl, BC =C-C-C ().

In order to investigate the effects of the parameters in (40) on the applicability of
ORTHO, a scries of five case studies was carried out for which the results are shown in
Figs 6-10. Thesc case studies are described below.

In Case Study [ (Fig. 6). the effect of variation of , (= s/I) on the accuracy parameter
n is shown. [The dotted lines in Fig. 6 pertain to 0%, 10% and 20% deviation of ORTHO
from FEM(M2) for n =1, 1.1 and 1.2 respectively.] For this case study, the following

parameters are kept constant :
n, =100, my =195, Lt=udl, BC = all-sides-clamped (C-C-C-C). @n

It can be observed from Fig. 6 that for n, = 0.067 (i.e. 14 stiffeners in either direction),
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Fig. 9. Case Study IV (r, = {00, n, = 0.067, LT = udl, BC = S-§-§-8).

deflection and plate stresses are well within 10% and stiffener stresses well within 20% on
the safer side. As n, increases, i.e. the stifleners become increasingly sparse, the formulation
ORTHO tends to deviate significantly from FEM(M2). The spirit of Case Study [ is retained
in Case Study II with the exception of the parameter LT, which has been changed to the
concentrated type. Thus, in Case Study IT (Fig. 7), variation of n with respect to n, is
presented for a central point load (cpl). It appears that even for a low value such as
n, = 0.067, ORTHO significantly overestimates the stiffener stresses. It may therefore not
be instructive to use the orthotropic formulation for concentrated loadings unless the
stiffeners are inordinately closely spaced. Case Study III (Fig. 8) differs from Case Study I
with respect to the boundary conditions, i.e. the parameter BC is now changed to an all-
sides-simply-supported (S-S—-S-S) condition. On account of the close similarity of variation

3AS 27:8-4
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in # values for Case Studices T and (11, it appears reasonable to conclude that support
conditions have negligible effect on the assumption of technical orthotropy. On the basis
of the observations made for Case Studies T T, it may be tentatively aceepted that the
deflection and plate stresses are estimated reasonably accurately (well within 10% on the
safer side) for engineering purposes, and stiffener stresses well within 20% by the orthotropic
formulation for n; = 0.067 and uniformly distributed loading. The effects of the eccentricity
parameter 7, (= d,/1) and the rigidity ratio o, (= D/D,) are investigated in Case Studics
IV and V (Figs 9 and 10) for r; = 0.067 and LT = udl. The constancy of y for the last
mentioned cases for different values of 7y and 75 seem to indicate that these parameters do
not affect the assumptions of technical orthotropy. It may be noted that the plate aspect
ratio , has been kept constant at 100 for all the case studies discussed herewith, However,
it was found that the parameter #,, like 7, and rg, did not give rise 10 any recognizable
variation in g for a given value of non-dimensionul stitfener spucing n,.

Obscrvations made above with regard to Case Studies 1-V seem to corroborute and
additionally quantify the prevalent qualitative opintons on the orthotropic theory. It was
stated by Huflington (1956) that the orthotropic theory is applicable provided the ratio of
stiflener spacings to plate boundury dimensions ure small enough. Hoppmann e af. (1956)
compared their theoretical and experimental results on deflections and strains which they
found in close agreement, considering an |l in. x [ in.-plate stiffened in one direction with
15 stiffeners. The theoretical caleulations were based on un orthotropic theory. In the
present investigation, deflections and plate stresses have been found to be within 5-10%
for s/1 = 0.067, i.c. for 14 stiffeners in any direction. This is an interesting correlation with
the number of stiffeners, viz. 15 chosen by Hoppmann and Huflington (1956) probuably on
the basis of experimental observations. The inaccuracy of the orthotropic theory for the
case of concentrated loadings was observed by Clarkson (1962). Case Study I specifically
indicates the large overestimation of stiffener stresses that may result from the application
of the orthotropic theory to stiffened plates with concentrated loads. It was “tacitly
assumed™ by Hoppmann and Huflington (1956) that their orthotropic analysis was not
affected by the pliate boundary conditions: in the present numerical study. no significant
changes in the values of n were found for C-C-C-C and $-S-5-S conditions. It was
remarked by Troitsky (1971) that rigorous analysis procedures yicld somewhat lower values
of stresses as compared to those obtained using Huber's orthotropic theory. The trends in
Case Studics -V confirm this statement as in most cases the i parameters are greater than
unity.
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RESULTS OF THE NON-LINEAR ANALYSIS AND DISCUSSION

A geometrically non-linear and materially elastic analysis for eccentrically stiffened
plates. under orthotropic assumptions using an integral equation method, was presented
by Srinivasan and Ramchandran (1977). A quantity r,, was defined by the pre-mentioned
authors as a characteristic for stiffened plates as follows:

Volume of deck plate per unit area
o = - - .
™ Total volume of plate and stiffeners per unit area

(42)

Inlight of the observations already made, the quantity r,, needs closer examination. Employ-
ing the notation of eqn (38) and following the definition of r,, in (42), we have

{

I b,
T v 2nbdl ! I} d’ @3

—42l-—-1}~
b, 5
where 1 = number of stiffeners in any direction
= { -1 43.n
§

It is scen from (43) that r,, is a function of three non-dimensional quantities //b,, s/l and
d,/t which are all included in the list of r-parameters in (39). If r,, together with s/ and d /1
arc used as representative parameters, the quantity /b, is automatically fixed (so r,, may be
viewed as a parameter in lieu of //4,). Furthermore, if 5/1, o, /¢ and I/h, are known, D/D, is
also known in view of rclation (39.4) for plates and stiffeners made of the same material,
Hence, it is sufficient to plot, in the thin plate range, representative values of deflection and
plate, as well as stiffener stresses against 7,,, s/ and d,/t given the loading and boundary
conditions. In order to attempt a comparison with Srinivasan and Ramchandran (1977),
clamped plates under uniformly distributed loading are considered. In accordance with the
conventions followed by the previous authors, the representative deflection and plate, as
well as stiffener stresses are normalized as follows :

normalized deflection,

we=om 44.1
=7 (44.1)
normalized plate stress,
=gy
Sr = Opm T (44.2)
normalized stiffener stress,
1 —puy?
Se =0 HZEL (44.3)

where w,,. 6, and o,,, are respectively the deflection, plate-top stress and stiffencr-bottom
stress at the plate centre, and,

I Total volume of plate and stiffeners
Area of the stiffened plate

Pt+2nbd,l bd,
=‘*:‘i‘:-*—=1+2(£—|)-7~. (44.4)
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Fig. 11. Load vs deflection (r,, = 0.9, n, = 0.067).

A normalized loading parameter @ is also defined following Srinivasan and Ramchandran
(1977):

14
= i )

where ¢ is the intensity of uniformly distributed loading, and

ER’

D=|2(|—,ﬁ)'

(45.1)

All quantities not defined in relations (43)-(45.1) above have been defined in the preceding
section on the range of validity study of ORTHO.

It may be noted that a value of r,, equal to unity represents an unstiffened plate. For
such a plate, very good agreement was obtained with the results of Srinivasan and Ram-
chandran (1977) for normalized deflection and stresses given by (44.1)-(44.3), with respect
to the non-dimensional load §. For stiffened plates, results are presented for various values
of d./t in Figs 11-13 for r,, = 0.9, whilst maintaining s// constant at 0.067 (by trecating this
value as a cut-ofT point for applicability of the orthotropic theory). In their results for the
orthogonally stiffened plate, the previous authors have characterized a stiffened plate sysem
on the basis of the single parameter r,,. However, as apparent in Figs 1 1-13, the eccentricity
parameter d,/t has a significant effect on the outcome of results for a given value of r,,.
Consequently, the results of the above-referenced authors seem to suffer from a lack of
uniqueness. It is observed from Fig. 11 that with increasing values of d,/t, W decreases,
which is an expected outcome (orthotropic bending rigidity is a cubic function of d, for
given plate thickness and material properties). At lower load levels, the stresses do not seem
to vary much with d,/r; however, at higher loads. the differences in stresses are quite
remarkable for different values of d,/t with stresses showing an increase with increasing
values of d,/t.
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Fig. 12. Load vs top-stress (r,, = 0.9, x, = 0.067).
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Fig. 13. Load vs bottom-stress (r,, = 0.9, n, = 0.067).

CONCLUSIONS

A shear-deformable orthotropic theory has been presented for plates with closely-
spaced, eccentric open-web stiffeners having negligible torsional stiffness. The finite element
formulation presented also models geometric non-linear behavior. The question of how
close the stiffeners should be for the orthotropic approach to yield reasonable results has
been investigated in the thin plate range. It appears that at least 14 stiffeners are necessary
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(for s/ = 0.067) along any direction in the presence of distributed loading, to obtain
deflection and plate stresses well within 10% on the safer side from an orthotropic approach.
It has also been shown that along with a volumetric ratio parameter as used by earlier
authors. an eccentricity parameter should also be taken into account in presenting results
for a stiffened plate system.
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APPENDIX
The stiffness coctficients in (7) are given as follows:
Er
Cypo= ;- ey +r.Ed,
Lope®
C., = ME
b—pt”
CH = 5"\ Elttlt(t+l’\)
C!I =3 £’,1 +rvadv
b —p” ’

Cyy = rE.d(t+d,)

C}] = Cpl
LB
1200 —pH)

Cas + i B d(di+id e+ 307

45

-—€"—‘—‘——- + br B d(d Y o+ 30)
2("—#:) Myplog l 330,77 24y ]

Css =
__Er
R T )
Cyr =Gt +3r,G M,
Cu = i:G,l‘P %';-Gw‘[v
where
1. b,

r, o=

h

n.bh,,

r, o=
a

n,, = total number of x-stiffeners

n,, = total number of y-stiffeners.



