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"""tfllct-In the past. formulations for technically orthotropic plates appear to have been hased
l>nlyon Kirchholrs assumptions fl'r the claSSIcal thin pIaIe theory. In the present paper. the ;nllhors
have studied a formula lion applicable to C\.'centrically stiffened pl<ltes b<l~:d on the Reissner-Mindlin
plate theory. Due to the formidahility of the 10th-order governing e4uations of this formulation in
yielding e10sed form analytical solutions. rlocourse has bl.ocn taken to the finite element method. The
r;lOge of validity of the l'rthotropic model. so dependent upon the prol\imity of stifTeners. has bI.-cn
assessed ;lOd delmlrcated hy comparison with a more general diserete plate -beam model using the
tl-chni4ul'S of dimensional ;lOalysis. Finally. results arc presented for the geometrically non·linear
orthotropic pl"te ;lOd cI.mparisons ;Ire made with the work of earlier investig"lors to highlight the
f"et th"t the degree of l'\.'Centridty of stiffeners is an import;lOt f;\ctor to be t"ken into account. in
"ddition to the volulIlelrk ratio betwl-cn plate and slilTeners.

INTRODU<...ION

The problem of the bending of eccentrically stiffened pl,ttes docs not lend itself to easy
analytical solutions even for simple geometries and boundary conditions. Consequently.
idealization of a stiffened plate. which can be treated as un integral system of plate and
beams. by means of another plate of same thickness as the parent plate but possessing
equivalent. directionally varying properties. has been quite popular (Bares and Massonnet.
1966; Troitsky. 1971). In the literature. such idealized plates with the stiffeners smeared out
arc termed as "technically orthotropic plates" on account of their resemblance with plates
of truly orthotropic muterials. In the past. to the authors' knowledge. orthotropic plate
theories rdevant to eccentrically stiffened plates have been based on Kirchhoff's assumptions
of the classical thin plate theory. as well as the Euler-Bernoulli beam theory. In the present
work. a higher order orthotropic plate theory for eccentric stiffeners, based on the Reissner­
Mindlin plate theory and Timoshenko beam theory is considered. The governing equations
for the present idealization are of the 10th-order and appear to be quite intractable in terms
of obtaining closed form solutions. even for simple geometries and boundary conditions.
The most convenient tool yielding approximate solutions acceptable for engineering
purposes. seems to be an energy method like the finite element method. This widely applied
numerical technique has been used here with the eight-noded. quadratic plate bending
clement (Mukhopadhyay and Satsangi. 1984; Deb and Booton, 1988) employing reduced
integration. A common premise of the orthotropic plate theories in the context of ortho­
gonally stiffened plates is the assumption of closeness of torsionally-soft stiffeners. As a
result. these theories may give rise to significantly erroneous results unless the stiffeners are
"reasonably" closely spaced. [n order to be able to apply a smeared plate or an orthotropic
plate theory with confidence. it is therefore essential on the part of an analyst to know,
quantitatively. the extent of its validity in terms of the approximations involved. In this
study. the same has been accomplished by comparing the results from the finite element
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formulation based on the higher order orthotropic theory (ORTHO). with the cor­
responding general discrete plate-beam finite element model [FEM(M2»). The effectiveness
of the latter formulation has already been studied (Mukhopadhyay and Satsangi. 1984:
Deb and Booton. 1988). In the numerical comparison between the models ORTHO and
FEM( M2). concepts ofdimensional analysis have been applied. The authors have not come
across any literature that gives any quantitative information on the degree ofapproximation
incorporated by the smearing of stiffeners in an orthotropic theory. Having demarcated the
extent of validity of the present orthotropic model considering small-deformation linear
elastic behavior. a comparison has been made for geometrically non-linear behavior with
the results given by Srinivasan and Ramchandran (1977). The main aim in this comparison
has been to point out that the degree of eccentricity of stiffeners is an important factor in
affecting the behavior of a stiffened plate. for a given volumetric ratio of plates to stiffeners.
It may be recognized that despite the availability of a general formulation like the
FEivl(M2). the formulation ORTHO may be extremely advantageous in terms of simplicity
of input data and computational efficiency in such cases where a fine grid of stiffeners is
present.

CONSTITUTIVE MODEL AND GOVERNING EQUATIONS

The princip.1I assumptions in the present formulation are the following:

(i) Transverse shear deformation is accounted for in the same manner as in the
Reissner-Mindlin plate theory and Timoshenko be..m theory.

(ii) Norm.1I stress in a direction pcrpendicul'lr to the plane of the plate is neglected.
(iii) A typical stilfener section is assumed to be symmetric about a vertic'll plane

bisecting the web.
(iv) The in-plane bending of stiffeners is neglected.
(v) Stilli:ners arc assumed orthogonal and el{ually and closely spaced.
(vi) Stilli:ners in any une direction are all of identic..1cross-section.
(vii) Stilli:ners arc ofopen web .. nd slender type. possessing negligible torsional stifrness.

In terms of the relev..nt translational (II. v and 11') ..nd rotatory (0. and 0.. ) degrees of
freedom of the pl.. te mid-surf~lce (= = 0). the following displ..eement field is assumed for
the stilli:ned plate continuulll (the positive signs of 0, ..nd 0.. t.. lly with the ..ssumption th.. t
sagging bending moments are positive):

( I)

The relevant engineering str'lins for infinitesimal deformations are then given as follows:

c, U.•

1:.. V.•.

" U..1·+V.• (2)I ,{~.

i\: U.:+ w.
i'y: V.: + fV.,.

Therefore. for an isotropic material. the stresses in the plate are:
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Fig. I. Geometry of an orthotropic plate.
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f pn = 0 0 CJJ 0 0 " (3)I '0'

f p ,: 0 0 0 C~~ 0 "It:

fpl': 0 0 0 0 c" "II':

where. in terms of Young's modulus E
1
" Poisson's ratio JI, shear modulus Gp and a shear

correction f.lctor k l (usually taken as ;,).

JIE~.
('I' = -------.,

. I-W

Relevant stresses in the x-stiffeners arc:

Relevant stresses in the y-stil1cners arc:

{
U

u
'} [E." 0 ]{r..,}

f'I': = 0 k zG••, '/.-:'

(3.1 )

(3.2)

(3.3)

(3.4)

(4)

(5)

In (4) and (5). E... En and G.. , G" are pairs of Young's and she'lr moduli. respectively.
for x- and y-stilfeners. and. k ~ is a shcar correction factor usually taken as j for rectangular
cross-sections.

By virtue of the assumptions outlined previously. the generalized stresses (stress­
resultants) can be obtained by smearing out the stiffeners over the plate spans and inte­
gmting the relevant quantities over the plate thickness and the stiffener depths. Typically.
the bending moment M, can be obtained as shown below for the special case of rectangular
stiffeners (see Fig. I) by summing contributions due to plates and stiffeners:
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N1II •

Fig. 2. Positive generalized displacements and stresses.

I E I (I {EII/.'.. I I ' lI l'}=!'. ',,1, I+I,)U.• - 12(i='j;!) +.I',£"I,(d;+,!I,I+:4t") 0",

pE I}

12(1 ~p!) 0,\.1" (6)

The remaining stress-resultants (with the sign conventions in Fig. 2) can be obtained
similarly leading to a constitutive relation of the following type for the "technically ortho­
tropic" plate (where the stiffness elements are defined in the Appendix):

N. CII CI~ 0 C I4 0 0 0 0 It••

Ny Cl~ C~~ 0 0 C~, 0 0 0 l..'•.\-'

N9 · 0 0 Cll 0 0 0 0 0 U.y +v••

lvI. C 14 0 0 Colol C4S 0 0 0 -0,'t...t
. (7)=

M" 0 CH 0 c.15 C ss 0 0 0 -0.'\.1-

M •.•. 0 0 0 0 0 Cf,6 0 0 - (0.•..,.+0,_••)

Q<: 0 0 0 0 0 0 Cn 0 lI' -0..f .t

Q•.: 0 0 0 0 0 0 0 CMS w.,.-Oy

In symbolic notation, let (7) be written as,

a=Cr.l•. (7.1)

If an unstiffencd plate is made ofa specially orthotropic material, i.e. the one for which the
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Fig. 3. Eljuilibraling stress resultants at the boundary.

dirc~tions of the principal mnterial axes coincide with the x, y and: axes. the terms C I4

nnd CH which give rise to coupling between the membrane and bending resultants in (7).
will vanish. On the other hand. for a generally orthotropic plate for which the material's
principal directions are all inclined to the geometric x, y and: directions. the constitutive
matrix in (7) will be fully populated. i.e. all components of the generalized strains will be
coupled to each other. The "technical orthotropy" being considered here thus really lies in
between behaviors exhibited by special and general orthotropies.

By applying equilibrium considerations in the presence of a transverse loading P(:c.y).
the following governing equations for the orthogonally stiffened plate may now be derived:

C II "." + CHII. v.v + (C 12 + CH)t'..,\. - C I40,..u = 0 (8)

C77II·.U+CKKII· ,.-C770,..'-CKKO +P = 0 (10)

The above eqns (8)-(12) are subject to the following boundary conditions (see Fig. 3):
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II = U(s). or. N,nl +N...n~ = N.(s) (13)

t· = V(s). or. N"nl +N,>n~ = N~(s) (14)

U' = W(s). or. Qx:n, +Q..:n~ = Q(s) (15)

Ox = 0.(s). or. M,nl +M,,>n~ = M~(s) (16)

0, = 0,(s). or. M"n, +M,>n~ = -M,(s). (17)

Equations (8)-( 12) are of 10th-order and are difficult to solve purely analytically. even for
relatively simple plate geometry and boundary conditions. A tractable case is that of a
simply supported rectangular plate (a x b) where double Fourier (Navier's) type ofsolutions
can be found in the following forms:

x x

II = L L A",,, cos (!X",x) sin (P"y)
m... I""",1

x,

l' = L L 8"", sin (ex",x) cos (P"y)
ffI"",llf=l

xc ,

I\" = L L C..."sin(!X",x)sin({J"y)
m- t "-I

,
0,:; L L D",,, cos (!X",x) sin (f/"y)

",.1- n-l

,", I.

0,> = L L E",,, sin (!X",x) cos (fJ"y).
", ... t ,.-1

( 18)

( 19)

(20)

(21 )

(22)

It is obvious that for the above type of solutions to be applic<lble it is necessary to express
the applied transverse loading as follows:

In (18)-(23) above.

( (

P = L L P"''' sin (!X",x) sin (f/"y).
",-1,,-1

m7t
eL", = --­

tI

(23)

(24.1)

(24.2)

It is pointed out that thl: assuml:d solutions (18)-(22) satisfy the following simply supported
type of boundary conditions:

at x:; O.a: L':; II' = 0.. = 0

at y =O. h : II:; II" :; 0, = 0,

(25.1 )

(25.2)

For a given pair of m and n. use of the corresponding terms (and their derivatives) of the
series expansions (18)-(23) in eqns (8)-(12) will result in the following matrix equation for
the constants A",,,. 8m". etc. :
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(C11:x;, +C33 P;) (CI~ +Cd:xmP" 0 -C1.j:X';'

(C1; +Cn):XmP" (C33:X;' +C~;P;) 0 0

0 0 (C17:X;' + CnP;) -Cn:Xm

-CI.j~ 0 -C17:Xm (C4.j~;' + C66P; +Cn )

0 -C~sP; - CssP" (C.jS+C66 ):xmP"

0 Am" 0

-C~sP; 8m" 0

-CssP" Cm" = Pm" (26)

(C.js + C66):xmP" Dm" 0

(C66:x,;, +CssP; +Cn) Em" 0

For the particular cases of (a) a uniformly distributed load p, and. (b) a concentrated load
Po(tlj 2. bI2), Pm" will be given as follows:

4p
Pm" =-,- (cos mx - I)(eos fiX - I). for case (a)

X"IIm

4Po • mx tlX=--- Sin -2 sin -=). for case (b).mil _

(27. \)

(27.2)

The closed form douhle Fourier solutions furnished in the foregoing serve to check the
accuracy of the finite element orthotropic formulation to be discussed in the section that
follows.

FlNITEI:LEMENT FORMULATIONS

Two finite element formulations arc relevant to the present exposition: (i) a discrete
plate-beam formulation termed FEM(M2) in Deb and Booton (1988). and (ii) a for­
mulalion (ubbreviated us ORTHO) accounting for technictll orthotropy of the type ulready
discussed. tmd briefly mentioned in Deb and Booton (1988). The formulution FEM(M2)
is quite generul as compared to ORTHO and hence can be ust.-d as a basis for judging the
applicability of the lalter, constmined mainly by the assumption of closeness of stiffeners.
The el1"cctiveness of FEM(M2) has already been shown in Deb and Booton (1988). The
orthotropic formulation. which like FEM(M2) employs the isoparametric serendipity, eight­
node plate-bending clement (Fig. 4). tukes into account geometric non-linear behavior,
consistent with Von Karman's assumptions forlargedetlectionsofplates. Theconsidemtion
of some of the non-linear terms in the expressions for strains is particularly important for
stiffened plates which can support large loads undergoing elastic deformation, greater th.1O
the infinitesimal. The sulient features of the present non-linear. finite element. orthotropic
formulation ure listed below:

(a) Finite clement approximation:
displacement field,

It

t'

J = II'

o.
0.

8'" ... ...= I-. N,M, = N«>".
I-I

(28)

where J, is the vector of nodal displacements at the ith node, N is the augmented (8 x 40)
matrix of shape functions and J" is the (40 x I) vector of plate nodal displacements.
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Fig. 4. The serendipily phIlO: element.

(b) Stmin -displacement relations:
inlinitesimal stmin field,

(29)

where E,. first appears in (7.1), 1. is a matrix of linear differential operators and B1.( = LN)
is the linear strain-displacement matrix.

The strain field, in Lagrangian coordinates, by taking into account non-linear dis­
placement gradients consistent with Von Karman's assumptions for large deflection of
plates, is given by

(30)

where

w..• w..•'

o
o
o
o
o

The strain field due to an incremental (or differential) displacement field is now

t = tL+i,'VL = (BL +AG)ct = BN1.ct

(31)

(32)

where BNd = BL +AG) is the non-linear strain-displaeement matrix, with A and G given
as follows:
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[w 0 M: 0 0 0 0

~JAT = i; ... (32.1)
M:.... M: 0 0 0 0,JC

[: 0
0

0 :]G= ex N. (32.2)

0
0

0
OJ'

(c) Invoking virtual work principle and using a total Lagrangian approach. it is possible to
write

i t"T ii' dA = i:R. (33)

where A is the undeformed plate mid-surface. ii' is the second Piola-Kirchhoff stress vector
and R is the vector of plate nodal forces. As a first approximation. we assume that
displacement gradients are small compared to unity and rigid body rotations can be ignored.
The second Piola-Kirchhoff stresses ii' in (33) can then be replaced by the Cauchy stresses
~. Also. employing (32) and the condition of arbitrariness of the virtual displacement field
$~. (33) can be reduced to

(34)

In the above equation, the integrand is a non-linear function of the nod,,1 displacement
vector 5~. An iterative solution to this equation can be sought by using the t"ngent stilfness
(Newton-Raphson) method. The solution scheme for the present case is much the same as
described by Pica (" al. (1980).

RANGE OF VALIDITY STUDY OF THE ORTIIOTROPIC TIIEORY

In order to assess the range of validity of the orthotropic formulation ORTHO. the
various parameters likely to affect the assumptions of technical orthotropy are, at first,
identified using the principles of dimensional analysis and a comparison is then carried out
in the linear range with the more general formulation FEM(M2). For convenience the
simplified problem of a square plate (a = h = /). orthogonally stiffened with an equal
number of rectangular stiffeners in the x and y directions. possessing identical sectional and
material properties is considered. In order to estimate the deviation of maximum dellection
and plate, as well as stiffener stresses obtained through ORTHO with respect to those
obtained through FEM(M2). the following parameters are introduced:

Maximum deflection obtained using ORTHO
'1•. = Maximum deflection obtained using FEM(M'2)

Maximum plate stress obtained using ORTHO
'1.•,p = Maximum plate stress obtained using FEM(M2)

Maximum stiffener stress obtained using ORTHO
'1".• = Maximum stiffener stress obtained using FEM(M2) .

(35)

(36)

(37)

Let the parameters '1... '1.,p and '1.,.. which are all dimensionless. be together denoted as '1.
The dependence of '1 on the relevant parameters may be expressed symbolically as follows:
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" = (j)(/. I, b,. d,. s. E. E,. IJ. LT. BC).

(j) = "function of'

I. 1 = plate span. thickness respectively

b" cl, = stiffener-web width, depth. respectively

s = spacing of stiffeners

E,/I = Young's modulus, Poisson's ratio, respectively. for the plate material

E, = Young's modulus for the stiffener material

LT =: Loading type. concentrated or uniformly distributed

BC=: Simply supported or fully clamped boundary conditions.

(38)

In eqn (38), LTand BC are discrete conditions for which no numerical valucs are necessary
and it sutlices to remember that these parametcrs should be varied. A dimensional .malysis
(Deb £'1 at.. 1985; Deb and Deb. 1986) of the remaining varklbles in (38) will result in the
f\lllowing possible set of seven dimensionless tt-p.uameters:

ttl = lit, tt~ = I/h" ttl = d)l. 7t~ = s/I, 7t~ = E/E" 7t h = JI, ttl = '1. (.39)

In the above set of 7t-paramcters, 7t I identifies whether the plate is thin or thick; TC ~ m..y he
utilized to study the eflcct of the sp..n size of ,1 pl..te I'()r a given web width of stillcners; 7t I

is a measure ofeccentricity of stiffeners; 1t4 is a signific.mt p<lrameter which is lIsed to study
the degree of proximity of stil1cners beyond which the orthotropic f'(lrmulation would be.
by .md lurge. lllmcceptuble; the parameter It 5 is modi lied to u more meuningful rigidity
ratio 0/D, as shown later; the parameter ltc, is notlikcly to play .IllY role in 'll1ceting smeared
behavior and hence has been kept constant at 0.3; undo 1t 7 is basicully the set of dependent
v.. riablcs 'I... 'I"p und ,/,/, whose numerical diflcrences with unity will indicate the ex.tent of
approximation introduced by the smearing of stiffeners in the orthotropie theory.

It is known from plute theory that E/(I-JI~) is a more meaningful quuntity for plates
rather than simply E because of its two-dimensional behuvior. Using this fact and the
technique of compounding (Deb ('I "I.. 19H5) in dimensional analysis. 7ts is transformed as
follows:

where D and D, arc. respectively, the plate and stiffener rigidities:

Ell
D=,

12(I-W)

(39.1 )

(39.2)

(.39.3)

In the present par.lmetrie study. the stilTened plate system is assumed to be made up of one
material. i.e, E = E•• resulting in a further modification of the parameter D/D,. Rewriting
D.D, under the preceding assumption (E = E,). we have
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Fig. 5. Convergence study.

(39.4)

Since 7[h (= 0.3) is kept constant. it is evident from (39.4) above that 7[~ will be determined
if 7[ ~ (= DID,). 7[.1 and 7[4 arc known. Hence. for the purpose of demarcating the range of
validity of ORTHO, it is only necessary to study the inOuence of the following parameters
on tl:

7[.=111, 7[J=tI,ll. 7[4=sjl. 7[s=DID•• LT.BC. (40)

Before starting the intended parametric study, the convergence characteristic of
ORTHO needs to be checked. For this purpose. a comparison is made with the series
solutions presentcd in an earlier section [eqns (18)-(27.2») by taking a simply supported
rectangular stiffened plate with 14 stiffeners in the x direction (i.e. n,t = 14, n". =0). with
the following geometrical and material properties:

for the plate:

a = 4, b = 2, 1 = 0.1

E = 2 X lOll, It = 0.3

for the stilTeners :

tit = 0.5. bK •t = 0.1

E•.t = 2 X 1011.

The results ofconvergence study (for central deOection w) are shown in Fig. 5 for two cases:
(a) udl (uniformly distributed load) = 31.250. and. (b) cpl (central point load) = 52.000.
Excellent convergence (up to three decimal places) is obtained for about 16 elements for
case (a) and for about 24 elements for case (b). To obtain similar convergence for stresses
for the present displacement-based method however, a slightly higher number of elements
is necessary.
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Fig. 6. Case Study I (It, =- 100. It) = 5. LTs udl. 8C s C-C-C-C).
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Fig. 7. Case Study II (It I = 100. It I = 5. LT == cpl. BC == C CCC).

In order to investigate the effects of the parameters in (40) on the applicability of
ORTHO. a series of five case studies was carried out for which the results are shown in
Figs 6-10. These case studies are described below.

In Case Study I (Fig. 6). the effect of variation of X4 (= sll) on the accuracy parameter
" is shown. [The dotted lines in Fig. 6 pertain to 0%, 10% and 20% deviation of ORTHO
from FEM(M2) for" = \, 1.1 and 1.2 respectively.] For this case study, the following
parameters are kept constant:

XI = 100, XJ = 5, Lt == udl, BC == all-sides-c1amped (C-C-C-C). (41)

It can be observed from Fig. 6 that for X4 = 0.067 (i.e. 14 stiffeners in either direction),
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Fig. 8. Case Study III (It I - 100. It .• = S. LT!!IE udl. BC 111 S-S-S-S).
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Fig. 9. Case Study IV (It, = 100. It. = 0.067. LT == udl. BC == S ·555),

deflection and plate stresses are well within 10% and stiffener stresses well within 20% on
the safer side~ As 1t. increases. Le. the stiffeners become increasingly sparse. the formulation
ORTHO tends to deviate significantly from FEM(M2). The spirit ofCase Study I is retained
in Case Study n with the exception of the parameter LT. which has been changed to the
concentrated type. Thus. in Case Study n (Fig. 7). variation of " with respect to 7t. is
presented for a central point load (cpl). It appears that even for a low value such as
1t4 = 0.067. ORTHO significantly overestimates the stiffener stresses. It may therefore not
be instructive to use the orthotropic formulation for concentrated loadings unless the
stiffeners are inordinately closely spaced. Case Study III (Fig. 8) differs from Case Study I
with respect to the boundary conditions, Le. the parameter BC is now changed to an all­
sides-simply-supported (S-S-S-S) condition. On account of the close similarity of variation
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in 'I v<tlues for Case Studies I <tnd fIl. it <tpre<trs rc<tsonable to conclude that support
conditions h.lve negligible etlect 011 the <tssumption of technic<tl orthotropy. On the h<tsis
of the ohserv<ttiolls Ill<tde for Clse Studies I III. it m<ty he tent<ttivdy <tcceptcd that the
ddkction <tnd pl<tte stresses 'Ire estim<tted rcason"hly uccllratcly (well within IO'X, on the
saleI' side) 1\)1' enginc.:cring p"rposl.:s. and slil1ener stresses well within 20% by the orthotropic
formulation for 11:4 = 0.067 and unil\mnly distrihutcd loading. The cllects ofthe eccentricity
par'lllleter It \ ( = cI,f t) and the rigidity ratio It j ( = OJ {)J arc investigated in Case Studies
IV and V (Figs 9 <tlld 10) for "4 0= 0.067 .llld 1.1' == ud!. The constancy of" for the last
lllentioned c.lses for different v<tlues of 11: \ anu It 5 seem to indicate that these parameters uo
not allect the assumptions of technical orthotropy. It may he notcd that the pl"te aspect
ratio" t has hcen kept constant at 100 for all the case stuuics discussed herewith. However.
it W'IS founu that the p"rameter Itt. like Itl "nu Itj. did not give rise to any recognizahlc
vari"tion in 'I for a given valuc of non-dimensiotl<t1 stitlcner spacing "4'

Observations lll"de above with regard to Cuse Studies IV seem to corroborate and
additionally quuntify the prev.llcnt qu"litative opinions on the orthotropic theory. It was
stated by Hullington (1956) thut the orthotropic theory is "pplicuble provided the ratio of
stil1ener spacings to plate boundary dimensions ure small enough. Hoppmann et al. (1956)
compared their theoretical and experimental results on del1eetions ,lIld strains which they
found in close agreement. considering an II in. x II in.-plate stitlcned in one direction with
IS stitlcners. The theoreticul calculutions were based on an orthotropic theory. In the
present investigution. del1ections ulld plate stresses have been found to be within 5 Iln-;.
for .'III = 0.067. i.e. for 14 stillcners in any direction. This is an interesting correlation with
the number of stilleners. viz. 15 chosen by Hoppmann and Hullington (1956) prob<lbly on
the b<lsis of experiment<ll observutions. The inaccuracy of the orthotropic theory for the
case of concentrated IO<ldings was observcd by CI'lrkson (1961). Case Study II specific.lIly
inuic<ttes the lurge overestimation of stiffener stresses that m<lY result from the application
of the orthotropic theory to stillened plates with concentrated 10<lds. It was "tacitly
assumed" by Hoppmann and Hullington (1956) that their orthotropic anulysis was not
affected by the pl<lte boundary conditions; in the present numerical study. no signitic.tnt
chunges in the values 01'" were found for C-C-C-C and S·S·S-S conditions. It was
remarked by Troitsky (1971) that rigorous analysis procedures yield somewhat lower valucs
of stresses as compured to those obtained using Huber's orthotropic thcory. The trends in
Case Studies I-V contiI'm this statement as in most cases the /1 parumeters arc greater than
unity.
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RESULTS OF THE NON·LINEAR ANALYSIS AND DISCUSSIOS

A geometrically non-linear and materially elastic analysis for eccentrically stiffened
plates. under orthotropic assumptions using an integral equation method. was presented
by Srinivasan and Ramchandran (1977). A quantity 'pI was defined by the pre-mentioned
authors as a characteristic for stiffened plates as follows:

Volume of deck plate per unit area
'PI == Total volume of plate and stiffeners per unit area'

(41)

In light of the observations already made. the quantity,pt needs closer examination. Employ­
ing the notation of eqn (38) and following the definition of 'PI in (41). we have

I~t b.

'pt == 12t+2nb.d.1 == I (I ) d"
-+2 --1 ­
b. s t

where n = number of stiffeners in any direction

I
=--1.

s

(43)

(43.1)

It is seen from (43) that 'PI is a function of three non-dimensional quantities Ilh, ..5/1 and
d,ll which are all included in the list of n-pammeters in (39). If 'pI together with sll and dJI
arc used 'IS representative parameters. the quantity Ilh. is automatically fixed (so 'pI may be
viewed as a p<uameter in lieu of lib,). Furthermore. if 05/1. d.11 and lib, arc known. DID. is
also known in view of relation (39.4) for plates and stiffeners made of the same material.
Hence. it is sufficient to plot. in the thin plate range. repn.'SCntative v<llul,.'S of del1\"'Ction and
plate. <IS well as stiffener stresses against '1'1' sll and d.11 given the lo;tding and boundary
conditions. In order to attempt a comparison with Srinivasan and R'lmchandran (1977).
clam('\,.'t1 plates under uniformly distributed loading arc considered. In accordance with the
conventions followed by the previous authors. the representative del1ection and pt.lte. as
well as stiffener stresses are normalized as follows:

normalized deflection.

normalized plate stress.

normalized stiffener stress,

w- ...
w= 7( (44.1 )

(44.2)

(44.3)

where w.... tip'" and tI"" are respectively the deflection. plate-top stress and stiffener-bottom
stress at the plate centre. and.

Ii == Total volume of plate and stiffeners
Area of the stiffened plate

== 1
2
t+U;b,d.1 = t+2(~ _I) h,d,.

I- s I
(44.4)
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Fig. II. Load vs deflection (r" =' 0.9. It. = 0.067).

A normalized loading pammeter Qis also defined following Srinivasan and Rumchandrun
(1977):

(45)

where q is the intensity of uniformly distributed loading. and

(45.1)

All quantities not defined in relations (43)-(45.1) above have been defined in the preceding
section on the range of validity study of ORTHO.

It may be noted that a value of '1" equal to unity represents an unstiffened plate. For
such a plate. very good agreement was obtained with the results of Srinivasan and Ram­
chandran (1977) for normalized deflection and stresses given by (44.1 )-(44.3). with respect
to the non-dimensional load Q. For stiffened plates. results are presented for various values
of d.11 in Figs 11-13 for 'PI =0.9. whilst maintaining sl/ constant at 0.067 (by treating this
value as a cut-off point for applicability of the orthotropic theory). In their results for the
orthogonally stiffened plate. the previous authors have characterized a stiffened plate sysem
on the basis of the single parameter 'pl' However. as apparent in Figs 11-13. the eccentricity
parameter d.11 has a significant effect on the outcome of results for a given value of'pl'
Consequently. the results of the above-referenced authors seem to suffer from a lack of
uniqueness. It is observed from Fig. II that with increasing values of d.ll. Ii' decreases.
which is an expected outcome (orthotropic bending rigidity is a cubic function of d. for
given plate thickness and material properties). At lower load levels. the stresses do not seem
to vary much with d.ll: however. at higher loads. the differences in stresses are quite
remarkable for different values of d.11 with stresses showing an increase with increasing
values of d.ll.
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Fig. 13. Load vs bottom-stress (rpl'" 0.9.1[.'" 0.067).

CONCLUSIONS

A shear-deformable orthotropic theory has been presented for plates with closely­
spaced. eccentric open-web stiffeners having negligible torsional stiffness. The finite element
formulation presented also models geometric non-linear behavior. The question of how
close the stiffeners should be for the orthotropic approach to yield reasonable results has
been investigated in the thin plate range. It appears that at least 14 stiffeners are necessary
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(for 5.'/ = 0.067) along any direction in the presence of distributed loading. to obtain
deflection and plate stresses well within 10% on the safer side from an orthotropic approach.
It has also been shown that along with a volumetric ratio parameter as used by earlier
authors. an eccentricity parameter should also be taken into account in presenting results
for a stiffened plate system.
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APPENDIX

The stiffness coetlicienls in (7) arc given ;\s follows:

• l:.~t •( = ......_.. +r E. II
n I-It: \ \ t

. IIE~t( ,= .
I. I_Ill

C .. = Ir,E"tI,U+t!.l

l:.~t
Cll = ·1--' +r,E"d,.

-II'

CIS = Ir,.E".d•. (t+d,)

el\ = C,t

. E,t' I I I' , I "( = .... _ ..._ .. + ,r £ t (I -+;1 t+'.t-).. 12(1 -Ill) .,,,, , .,

. IIE,t!
(., = 12(1_/11')

E,t' I 1''\1 I'CH =12(1-pl) + ,r,E".d,.(t ; +!' ,.t+ .t·)

E t·1C = r.__.
•• 24( f +II)

C" = !G,t+ jr,G"d,

C•• = !G,I+ir•.G".d,
where

n"'l,h..,t'r =-_., a

n" =IOlal number of x-stiffeners

II" = lolal number of y-stiffeners.


